SHORT PAPER

Optical resolution of mandelic acid by complexation with (S)-(+)-alanine[†]

Koichi Tanaka*a, Takatumi Fukuokaa and Matoo Shirob

^aDepartment of Applied Chemistry, Faculty of Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan

 $^bX\mbox{-}ray$ research Laboratory, Rigaku Corporation 3-9-12 Matsubara-shi, Tokyo 196-8666, Japan

Racemic mandelic acid (2) was resolved efficiently by complexation with (S)-(+)-alanine (1) and the crystal structure of 2:2:1 complex of (S)-(+)-alanine (1), (R)-(-)-mandelic acid (2) and H₂O was determined characterizing the hydrogen bond network in the solid state.

Keywords: mandelic acid, (s)-(+)-alanine

Racemic mandelic acid (2) has been resolved by diastereomeric salt formation with α -phenylethyl amine¹ or ephedrin.² We have now found that (*S*)-(+)-alanine **1** forms a stable inclusion complex with (*R*)-(-)-mandelic acid **2**, and the latter can be resolved efficiently by inclusion crystallisation. For example, when a mixture of (*S*)-(+)-**1** (5.0 g, 0.06 mol) and (±)-**2** (17.0 g, 0.11 mol) was recrystallised from water (20 ml), a 2:2:1 inclusion complex of (*S*)-(+)-**1**, (*R*)-(-)-**2** (30% ee) and H₂O was obtained in 84% yield. After three recrystallisations of the complex from water, a pure inclusion complex of (*S*)-(+)-**1**, (*R*)-(-)-**2** and H₂O was obtained as colourless prisms (5.0 g, m.p. 182–187°C) in 37% yield. Dissolving the pure complex in H₂O (30 ml) and extracting with ether gave (*R*)-(-)-**2** ([α]_D -148.6 (*c* 8.1, H₂O))of 100% ee in 31% yield. The optical purity was determined by comparison with the reported [α]_D value.¹

The structure analysis showed that two crystallographically independent molecules of 1 and 2 exist together with one

Table 2 Hydrogen bonding geometry (Å, °)

 Table 1
 Selected bond lengths (Å)

1a–2a		1b–2b		
01 – C7	1.416 (6)	O6 –C18	1.418 (6)	
O2 – C8	1.219 (6)	O7 – C19	1.212 (6)	
O3 – C8	1.297 (5)	O8 – C19	1.309 (6)	
O4 – C11	1.229 (5)	O9 – C22	1.218 (6)	
O5 – C11	1.276 (6)	O10 – C22	1.255 (6)	

water molecule in the unit cell. The molecules of **1a** and **1b** are zwitterionic. The carboxylate groups form intermolecular hydrogen bonds with the carboxyl groups of **2** (**1a**....**2a** = 2.472 (5), **1b**....**2b** = 2.538 (6) Å), respectively (Fig. 1). The hydrogen bonds are significantly shorter than the others found in the crystal (Table 2), formation of discrete molecular complexes of **1–2** being suggested.

1a–2a and **1b–2b** are arranged to form hydrogen bonding networks in different layers alternatively atacked in the c direction (Fig. 2). Proton donating and accepting groups lie on one surface (hydrophilic) of the layer and phenyl groups lie on the other surface (hydrophobic). Between the layers, head-to-head or tail-to-tail contacts are found: hydrogen bonding networks are formed on the hydrophilic side, while no contacts shorter than Van der Waals contacts are formed on the hydrophobic side.

D-HA		D-H	HA	DA	D-HA
O1 – H10	O9i	0.89 (5)	2.15 (5)	2.905 (5)	142 (5)
01W – H1W	O6ii	0.91 (7)	2.28 (7)	3.033 (6)	140 (5)
01W – H1W	07ii	0.91 (7)	2.43 (6)	3.276 (6)	155 (4)
O1W – H1W′	O9i	0.87 (6)	2.20 (7)	2.898 (6)	137 (5)
03 – H3O	O5	1.21 (6)	1.27 (6)	2.472 (5)	171 (4)
06 – H6O	02	0.98 (6)	2.17 (6)	2.841 (6)	124 (3)
O6 – H60	O9i	0.98 (6)	2.50 (6)	3.326 (6)	142 (3)
O8 – H80	O10	0.93 (6)	1.77 (6)	2.538 (6)	138 (4)
N1 – H1N	O1Wiii	0.84 (6)	2.35 (6)	2.957 (7)	130 (4)
N1 – H1N	O2iii	0.84 (6)	2.75 (6)	3.000 (6)	99 (3)
N1 – H1N	07iii	0.84 (6)	2.37 (6)	3.038 (7)	137 (4)
N1 – H1N'	O5iii	0.80 (5)	2.09 (6)	2.869 (6)	164 (4)
N1 – H1N''	O1iv	0.81 (6)	2.20 (6)	2.863 (6)	139 (4)
N2 – H2N	O6v	0.84 (5)	2.07 (6)	2.894 (6)	167 (4)
N2 – H2N′	01v	0.99 (5)	2.66 (5)	3.057 (8)	104 (5)
N2 – H2N′	O4ii	0.99 (5)	1.84 (5)	2.791 (6)	160 (4)
N2 – H2N″	07ii	1.15 (5)	2.44 (5)	3.038 (6)	110 (2)
N2 – H2N″	O10ii	1.15 (5)	1.72 (5)	2.820 (6)	158 (3)

Symmetry code: (i) x, y+1, z; (ii) x-1, y, z; (iii) x+1, y, z; (iv) x+1, y-1, z; (v) x-1, y-1, z

* To receive any correspondence. E-mail: tanaka@eng.ehime-u.ac.jp

[†] This is a Short Paper, there is therefore no corresponding material in

J Chem. Research (M).

Fig. 1 The molecular structures showing 50% probability displacement ellipsoids and the atom-numbering scheme. Shortest hydrogen bonds are represented by broken lines.

Experimental

Optical resolution of (R)-(-)-mandelic acid 2 by inclusion complexation with (S)-(+)-alanine 1: when a mixture of (S)-(+)-1 (5.0 g, 0.06 mol) and (±)-2 (17.0 g, 0.11 mol) in water (20 ml) was kept at room temperature for 2 h , a 2:2:1 inclusion complex of (S)-(+)-1, (R)-(-)-2 (30% ee) and H₂O was obtained as colorless prisms (11.3 g) in 84% yield. After three recrystallisations of the complex from water, a pure inclusion complex of (S)-(+)-1, (R)-(-)-2 and H₂O was obtained as colorless prisms (5.0 g, m.p. 182–187°C) in 37% yield. Dissolving the pure complex in H₂O (30 ml) and extracting with ether gave (R)-(-)-2 (2.6 g, $[\alpha]_D$ -148.6 (*c* 8.1, H₂O))of 100% ee in 31% yield. The optical purity was determined by comparison with the reported $[\alpha]_D$ value.¹

Crystal data of the 2:2:1 complex of (S)-(+)-alanine 1 and (R)-(-)mandelic acid 2 and H_2O : $C_{11}H_{16}NO_{5.5}$, Mr = 250.25, Platelet, colourless, 0.2 x 0.10 x 0.03, Triclinic, P1, a = 6.0200 (5) Å, b = 8.181 (1) Å, c = 12.5380 (8) Å, V = 610.9 (1) Å³, Dx = 1.360 Mg m⁻³, Z = 2, $\mu = 0.109$ mm⁻¹, F(000) = 2660, T = 296 (1) K, final R = 0.063, Rw = 0.106 for 349 variables and 1567 reflections with $I > 2\sigma$ (I). The H atoms bound to N or O atoms were located from difference electron density maps and refined on their positional parameters using the reflections in the range of $2\theta < 33^\circ$. All other H atoms were placed in calculated positions and refined using a riding model (C–H = 0.95 Å). H atoms were given isotropic displacement parameters of their bonding atoms. Full crystallographic details have been deposited at the Cambridge Crystallographic Data Centre (CCDC 166936).

Received 23 October 2001; accepted 23 February 2002 Paper 01/1099

References

- R. Roger, J. Chem. Soc., 1935, 1544; A. Collet, J. Jacques, Bull. Soc. Chim. Fr., 1972, 12, 3330; E.J. Valente, W.M. Christopher,
- J. Zubkowski, D.S. Eggleston, X. Shui, *Chirality*, **1995**, 7, 652.
- 2 A.W. Ingersoll, J. Am. Chem. Soc., 1933, 55, 411.

Fig. 2 The crystal packing viewed down a-axis. H atoms bound to C atoms are not shown for clarity.